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A common analysis procedure minimizes the ln-likelihood that a set of experimental observables matches a 
parameterized model of the observation. The model includes a description of the underlying physical process 
as well as the instrument response function (IRF). In the case investigated here, the National Ignition Facility 
(NIF) neutron time-of-flight (nTOF) spectrometers, the IRF is constructed from measurements and models. 
IRF measurements have a finite precision that can make significant contributions to the uncertainty estimate 
of the physical model’s parameters. We apply a Bayesian analysis to properly account for IRF uncertainties in 
calculating the ln-likelihood function used to find the optimum physical parameters. 
 
 

I. INTRODUCTION 

A. NIF Measurements 

The National Ignition Facility (NIF) provides up to 2 MJ of 
3ω (351 nm) laser light to a variety of targets including 
hohlraums containing spherical capsules, and also directly to 
spherical capsules1,2. The capsules are filled with various 
mixtures of deuterium, tritium and 3He fuels that upon implosion 
create thermonuclear fusion. Neutrons, which are products of the 
fusion reactions provide diagnostics of the performance of the 
implosion through their kinetic energy spectrum3,4,5. Among the 
quantities inferred from the neutron spectrum are yield, ion 
temperature and the cold fuel areal density. Future analyses will 
attempt to infer information about temperature gradients and fuel 
motion6. The ability to provide physically meaningful quantities 
depends on the analysis of the uncertainties with which these 
quantities are determined from the spectrum measurements. 

B. NIF nTOF spectrometers 

The NIF nTOF spectrometers9-11 are deployed in 5 lines-of-
sight (LOS) at different polar- and azimuthal-angles around the 
Target Chamber Center (TCC). Each LOS is collimated 
providing a narrow view of the target at TCC, thus eliminating 
backgrounds from neutron interactions with material within the 
target chamber. The spectrometers occupy radial distance from 
18 to 27 m. For 4 spectrometers, a bibenzyl scintillator which is 
under-filled by the collimated LOS is viewed with 4 photo-
detectors of varying sensitivity. These photo-detectors are located 
out of the LOS and are shielded from the primary radiations 
originating at the target. Provisions for inserting a neutral density 
(ND) filter allows the ability to adjust the photo-detector 
sensitivities to the specific shot design. 

The photo-detector signals are propagated along coax cables 
of varying length to a digital oscilloscope, one for each photo-

detector, where the wave-forms are recorded and stored until 
readout. The four channels on each oscilloscope are set to record 
each detector signals at varying sensitivity, and each channel has 
a fiducial timing mark added to provide temporal alignment. 
These four channels can be used to expand the dynamic range of 
the digitizers through a “stitching” algorithm. 

II. NTOF ANALYSIS 

The signals are analyzed using a “forward fitting” 
procedure7. A relativistic model for the neutron spectrum  
contains four parameters: amplitude, ion temperature, central 
time and a scattering coefficient. The LOS attenuation and the 
modeled detector sensitivity, as functions of neutron kinetic 
energy, are applied to the neutron spectrum and transformed into 
time-of-flight to provide a prediction of the neutron flux at the 
scintillator. This flux is then convolved with the IRF to provide a 
model of the digitized signals. 

The parameters are optimized by a Least-Squares method 
formed from the difference of the observed signal and the model 
predictions. 

The uncertainty of the parameters is estimated by scaling the 
Least-Square value by the signal uncertainty as determined by the 
digitizer noise, assuming it is the dominant noise source. These 
uncertainty estimates have been determined to be underestimates 
of the actual statistical variation of the fit model parameters by 
various tests. However, the uncertainties of the LOS attenuation, 
scintillator sensitivity and the IRF are not taken into account.  

The analysis performed for this contributed paper calculates 
the ln-likelihood function including these sources of 
uncertainties. 
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III. BAYESIAN ANALYSIS 
The starting point for this analysis identifies the signal time-

series as a vector s with Ns components. The statistical variation 
of each component is assumed to be normally distributed and 
additive (with mean of zero). Similarly, the IRF is taken to be a 
vector h of Nh components, also normally distributed. The model 
of the signal in the time domain is used to form a matrix that 
transforms the IRF vector into a prediction of the signal vector: 

s = Mh+ es    (1) 

where es is the noise vector and the Ns x Nh matrix M is the 
Toeplitz matrix: 
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is built from the model time-series vector of length Ns.  
Presuming that the measured IRF represents a single member 
selected from a statistical population of IRFs based on variations 
about the “exact” IRF, we write: 

h =
⌢
h + eh   (3) 

where eh is the noise vector, and 
⌢
h is the “exact” IRF which we 

do not know. 

Bayes’ formula provides the posterior probability distribution 
function (PDF) for the model given the observed signal s and the 
IRF: 

p(s)p(m s,Rs, h,Rh ) = p(m)p(s m,Rs, h,Rh )  (4) 

where p(m) and p(s) are the prior pdfs for m and s and Rs and Rh 
are the covariance matrices for s and h. The pdf p(s|m,Rs,h,Rh) is 
unknown. However, the pdf of obtaining a signal from the model 
with the exact IRF would be: 

p(s m,Rs,
⌢
h) ~N (M

⌢
h,Rs )   (5) 

which is the normally distributed signal prediction and the pdf for 
a particular exact IRF: 

p(
⌢
h h,Rh ) ~N (h,Rh )   (6) 

which is the mean of the population of measured IRFs. These two 
expression can be used to provide the unknown pdf in Eq.(4): 

p(s m,Rs, h,Rh ) = d
⌢
h p(∫ s m,Rs,

⌢
h)p(
⌢
h h,Rh )  (7) 

where the integral is over all possible exact IRFs. If we assume 
that the integrand is also normally distributed: 
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one can then rearrange the terms isolating those in exact IRF and 
perform the integration to obtain the pdf corresponding the  
likelihood function we are interested in: 

p(m s,Rs, h,Rh )∝
p(m)
P 1/2 exp s -Mh( )T K s -Mh( )⎡

⎣
⎤
⎦  (9) 

where the matrices P and K are a result of the rearrangements: 

P = MTRs
-1M+Rh

-1( )
-1

   (10) 

K = Rs
-1 -Rs

-1MPMTRs
-1    (11) 

this likelihood has the form of a generalized χ2 where the 
covariance matrix is K, modified by the normalization |P| 
representing the integral over all exact IRFs.  

This analysis was presented by P. Pernot in the note 
“Bayesian analysis of signal deconvolution using measured 
instrument response functions” http://arXiv:physics/0604154v1.  

For our purposes we take the ln-likelihood to be: 

ln p(m s,Rs, h,Rh )⎡⎣ ⎤⎦∝ s -Mh( )T K s -Mh( )   (12) 

and minimize this form with respect to variation of the model 
parameters. Further, the uncertainties of the parameters of the 
model are found by varying each parameter separately until the 
value of the ln-likelihood increase by 1 (allowing for asymmetric 
uncertainties) in correspondence with the usual procedure with 
χ2.  

Note that where the signal covariance Rs=σs
2I where σs is 

the signal noise, and Rh → 0 (the limit of “exact” IRF which is 
currently used), that the ln-likelihood reverts to the χ2 used by the 
current analysis. 

Another insight of this analysis is that the selection of a 
single IRF from the population of possible IRFs can bias the 
parameters. This bias represents an irreducible systematic 
uncertainty for the parameters that can be calculated in this 
model. It is important to recognize that the assumed pdf for the 
distribution of IRFs around the exact IRF is an ansatz which may 
not be physically realized in the detector system. 

However, this analysis provides a framework to explore how 
uncertainties in the measurement process, as represented by the 
procedure by which the IRFs are constructed and the estimated 
covariance of the “measured” IRFs affects the uncertainties in the 
model parameters.  

IV. APPLICATION TO NIF NTOF 

The full analysis of the covariance of the signal and the IRF 
is underway. To make contact with the current analysis it is 
sufficient to assume a simple covariance model, Rs=σs

2I where 
the “noise,” σs, is set to the standard deviation of the wave-form 
signal (for the first 100 nanoseconds). The covariance of the IRF 
is similar, Rh=σh

2I where σh is set to same fractional uncertainty 
as the signal, σh = (σs/smax)hmax. The absolute value of σh is much 
smaller than σs.  

The time region in which the fit is performed is varied from 
30ns to 70ns in 10ns steps to investigate the convergence of the 
final results. The “exact” IRF fit is performed first, and the 
parameters passed to the Bayesian fit.  The signal used in the fit 



   

is taken from a single digitizer channel chosen to be the highest 
sensitivity channel which did not saturate. 

The optimization was performed by a multidimensional 
downhill simplex method using a χ2 like cost function. This cost 
function was used to find the parameter values where the cost 
function minimum was increased by 1, corresponding to the 
integrated likelihood function value of 63%, the definition of 1-σ 
parameter uncertainties. 

V. RESULTS 

The practical limit of the implementation of this analysis to 
the NIF nTOF analysis is set by the matrix operations. For matrix 
dimensions greater than 800x800 (80 ns of signal and 80 ns of 
IRF) more precise matrix operation algorithms will need to be 
employed. The parameter values for each fitting procedure 
converge for time regions greater than or equal to 40 ns, so this 
limit does not affect this study. 

 

The values for the parameters obtained by the two methods 
shown in Table I are in agreement within the parameter 
uncertainties. The minimum χ2 values per degree-of-freedom are 
similar, however the interpretation of this quantity for the 
“Bayesian” fit is difficult due to the very non-linear nature of the 
fits. The residuals, s-Mh, for each method are in agreement and 
are of order 1% of the maximum signal value, as shown in Fig. 1. 

The uncertainty estimate for using the “Bayesian” analysis is 
roughly 3 times larger than for the “Exact” analysis. This is due 
to the inclusion of the IRF uncertainties and a rigorous method 
for combining uncertainties of many “bins” of signal and IRF as 
dictated by the model parameters. In particular, the parameters 
Tion and scattering coefficient are significantly different, 
reflecting the sensitivity of these parameters to the IRF. The very 
large uncertainty of the scattering coefficient is likely due to the 
over estimate of the IRF long-time tail uncertainties, a result of 
this simple model of covariance.  

The residual also indicates the possibility that the IRF used 
has systematic departures from the underlying “exact” IRF in the 

signal peak region (indicated by large, non-statistical departures 
of the signal from the fit). There is also short-time coherent 
“noise” that could be due to the detailed behavior of the 
digitizers. 

 

Figure 1 Result of "Bayesian" method for the Alcove nTOF on 
shot N160418-001, in the top panel the black histogram shows 
the data recorded on the shot, the blue function is the fit result. 
The lower panel shows the residual of the data-fit. 

VI. CONCLUSION 

The Bayesian analysis of Pernot has been implemented and 
tested using NIF nTOF spectrometer data in the full analysis 
structure. The results agree with the previous “forward fit” 
analysis that assumes perfect knowledge of the IRF.  The 
uncertainty estimates using the Bayesian analysis are a factor of 3 
larger than those of the “exact” analysis, a result that was 
anticipated from numerical studies of the “exact” analysis 
performance. 

This method will provide a framework with which to 
investigate the elements of IRF construction leading to large 
uncertainties in model parameters, and provide insight in nTOF 
detector design and operations.  

For more elaborate models extracting neutron spectrum 
cumulants identifiable with aspects of capsule performance, the 
methodology provided by the Bayesian analysis will help 
estimate the expected uncertainties of these cumulants and further 
guide the design and operations of neutron spectrometers capable 
of detecting these subtle effects. 
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TABLE I. Result of fitting using the two techniques for nTOF 
SPEC-Alcove, detector 2 on the DT “layered” shot N160418-
001-999.  

Parameter Value Upper 1-σ Lower 1-σ 
“Exact” 
Amplitude (A) 
t0 (ns) 
Tion (keV) 
Scatter coef. 
χ2/ndof 
 

 
0.544 

449.78 
4.720 
0.613 
0.334 

 
0.003 
0.023 
0.055 
0.092 

 

 
0.003 
0.023 
0.055 
0.091 

 

“Bayesian” 
Amplitude (A) 
t0 (ns) 
Tion (keV) 
Scatter coef. 
χ2/ndof 

 
0.547 

449.76 
4.636 
0.649 
0.335 

 

 
0.009 
0.059 
0.183 
0.313 

 

 
0.009 
0.060 
0.174 
0.309 

 

 
 


